|
Failure mode, effects and criticality analysis (FMECA) is an extension of failure mode and effects analysis (FMEA). FMEA is a bottom-up, inductive analytical method which may be performed at either the functional or piece-part level. FMECA extends FMEA by including a ''criticality analysis'', which is used to chart the probability of failure modes against the severity of their consequences. The result highlights failure modes with relatively high probability and severity of consequences, allowing remedial effort to be directed where it will produce the greatest value. FMECA tends to be preferred over FMEA in space and North Atlantic Treaty Organization (NATO) military applications, while various forms of FMEA predominate in other industries. ==History== FMECA was originally developed in the 1940s by the U.S military, which published MIL–P–1629 in 1949. By the early 1960s, contractors for the U.S. National Aeronautics and Space Administration (NASA) were using variations of FMECA under a variety of names. In 1966 NASA released its FMECA procedure for use on the Apollo program. FMECA was subsequently used on other NASA programs including Viking, Voyager, Magellan, and Galileo. Possibly because MIL–P–1629 was replaced by MIL–STD–1629 (SHIPS) in 1974, development of FMECA is sometimes incorrectly attributed to NASA. At the same time as the space program developments, use of FMEA and FMECA was already spreading to civil aviation. In 1967 the Society for Automotive Engineers released the first civil publication to address FMECA. The civil aviation industry now tends to use a combination of FMEA and Fault Tree Analysis in accordance with SAE ARP4761 instead of FMECA, though some helicopter manufacturers continue to use FMECA for civil rotorcraft. Ford Motor Company began using FMEA in the 1970s after problems experienced with its Pinto model, and by the 1980s FMEA was gaining broad use in the automotive industry. In Europe, the International Electrotechnical Commission published IEC 812 (now IEC 60812) in 1985, addressing both FMEA and FMECA for general use. The British Standards Institute published BS 5760–5 in 1991 for the same purpose. In 1980, MIL–STD–1629A replaced both MIL–STD–1629 and the 1977 aeronautical FMECA standard MIL–STD–2070. MIL–STD–1629A was canceled without replacement in 1998, but nonetheless remains in wide use for military and space applications today. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Failure mode, effects, and criticality analysis」の詳細全文を読む スポンサード リンク
|